4766 Statistics 1

Section A

(With $\sum fx = 7500$ and $\sum f = 10000$ then arriving at the	he
mean)	
(i) £0.75 scores (B1, B1)	B1 for numerical mean
(ii) 75p scores (B1, B1)	(0.75 or 75 seen)
(iii) 0.75p scores (B1, B0) (incorrect units)	B1dep for correct units
(iv) £75 scores (B1, B0) (incorrect units)	attached
<u>After B0, B0</u> then sight of $\frac{7500}{10000}$ scores SC1. SC1or and	n answer
in the range $\pm 0.74 - \pm 0.76$ or $74p - 76p$ (both inclusive) s	cores
SC1 (units essential to gain this mark)	
Standard Deviation: (CARE NEEDED here with close pr	<u>coximity</u> B2 correct s.d.
of answers)	(B1) correct rmsd
• 50.2(0) using divisor 9999 scores B2 (50.201489	
• 50.198 (= 50.2) using divisor 10000 scores B1(<i>rr</i>	(B2) default
• If divisor is <u>not</u> shown (or calc used) and only an	
of 50.2 (i.e. not coming from 50.198) is seen the	n award
B2 on b.o.d. (default)	
<u>After B0 scored</u> then an attempt at S_{xx} as evident by eith	er $\sum fx^2 = 25,205,000$
$S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000} (= 2519)$	
or	After B0 scored then
$S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$	(M1) or M1f.t. for
$S_{xx} = (5000 + 200000 + 25000000) = 10000(0.75)$	attempt at S_{xx}
scores (M1) or M1ft 'their 7500 ² ' or 'their 0.75 ² '	NB full marks for correct
NB The <u>structure</u> must be correct in both above cases with of $\frac{1}{1}$ slip only after applying the f.t.	th a max results from recommended calculator functions

(ii)	$P(\text{Two } \pounds 10 \text{ or two } \pounds 100) = \frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999} = 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038) = 0.000028(3) \text{ o.e.} = (0.00002830283)$ $\frac{\text{After } \text{M0, } \text{M0} \text{ then } \frac{50}{10000} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000} \text{ o.e.}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 ⁻⁵ o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000} \text{ scores SC1}$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case #1) (SC1 case #2) <u>CARE</u> answer is also 2.83×10^{-5}	3
00		TOTAL	7
Q2 (i)	Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 sioc M1 for $1/\binom{6}{3}$ A1 CAO	3
		TOTAL	5
Q3 (i)	<i>p</i> = 0.55	B1 cao	1
(ii)	$E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ $= 0 + 0.1 + 0.2 + 0.45 + 4$	M1 for Σrp (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors) M1 for $\Sigma r^2 p$ (at least 3 non zero terms correct)	
	= 0 + 0.1 + 0.2 + 0.45 + 4 = (4.75) Var(X) = 'their' 4.75 - 1.35 ² = 2.9275 awfw (2.9275 - 2.93)	M1dep for – their E(X) ² provided Var(X) > 0 A1 cao (no 'n' or 'n-1' divisors)	5
(iii)	P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.	M1 for (0.05+0.05+0.25) ² or 0.35 ² seen A1cao: awfw (0.1225 - 0.123) or 49/400	2

TOTAL 8			
		TOTAL	8

Q4	$X \sim B(50, 0.03)$		
(i)	(A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$	M1 0.03×0.97^{49} or $0.0067(4)$	
	(B) $P(X = 0) = 0.97^{50} = 0.2181$ P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447	M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0. 337 to 0. 3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34	3
	I(X > 1) - 1 - 0.2101 - 0.3372 - 0.4447	B1 for 0.97^{50} or 0.2181 (awfw 0.218 to 0.2181) M1 for 1 - ('their' p (X = 0) + 'their' p(X = 1)) must have both probabilities A1 CAO (awfw 0.4447 to 0.445)	3
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$ Condone 240 × 0.34 = 81.6 = (82) but for M1 A1f.t.	M1 for $240 \times \text{prob}(A)$ A1FT	2
		TOTAL	8
Q5 (i)	P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq p(R \cap L)$ so not independent)	M1 for 0.36 × 0.25 or 0.09 seen A1 (numerical justification needed)	2
(ii) (iii)	$R \xrightarrow{L} 0.2 \xrightarrow{L} 0.05$	G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59) The last two G marks are independent of the labels M1 for 0.2/0.36 o.e.	3
	$P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt } 0.56\text{)}$ This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if ' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	A1 cao E1 (indep of M1A1) Order/structure <u>must</u> be correct i.e. no reverse statement	3
		TOTAL	8

Section B

r			T
Q6	Median = $4.06 - 4.075$ (inclusive)	B1cao	
(i)			
	$Q_1 = 3.8$	B1 for Q_1 (cao)	
	$Q_3 = 4.3$	B1 for Q_3 (cao)	
	Inter-quartile range = $4.3 - 3.8 = 0.5$	B1 ft for IQR must be	
	11101-quartine range = 4.5 - 5.8 = 0.5	using t-values not	
		locations to earn this	4
		mark	
		mark	
(ii)	Lower limit ' their $3.8' - 1.5 \times$ 'their $0.5' = (3.05)$	B1ft: must have -1.5	
	Upper limit ' their $4.3' + 1.5 \times$ 'their $0.5' = (5.05)$	B1ft: must have $+1.5$	
	Very few if any temperatures <u>below 3.05 (but not zero)</u>	E1ft dep on -1.5 and Q_1	
	None above 5.05	E1ft dep on+1.5 and Q_3	
	'So few, if any outliers' scores SC1		
		Again, must be using t-	4
		values NOT locations to	-
		earn these 4 marks	
(iii)	Valid argument such as 'Probably not, because there is nothing		
	to suggest that they are not genuine data items; (they do not	E1	
	appear to form a separate pool of data.')		1
	Accept: exclude outlier – 'measuring equipment was wrong' or		1
	'there was a power cut' or ref to hot / cold day		
	[Allow suitable valid alternative arguments]		
(iv)	Missing frequencies 25, 125, 50	B1, B1, B1 (all cao)	
			3
(v)	$Mean = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50)/600$	M1 for at least 4	
``		midpoints correct and	2
	= 2432.8/600 = 4.05(47)	being used in attempt to	2
		find $\sum ft$	
		—	
		A1cao: awfw (4.05 –	
		4.055) ISW or rounding	
(vi)	New mean = $1.8 \times$ 'their $4.05(47)$ ' + $32 = 39.29(84)$ to 39.3	B1 FT	
	New $s = 1.8 \times 0.379$	M1 for 1.8 × 0.379	3
	= 0.682	A1 CAO awfw (0.68 –	
		0.6822)	
		TOTAL	17

Q7 (i)	$X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {\binom{10}{8}} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt) or $P(X = 8) = P(X \le 8) - P(X \le 7)$ $= 0.6242 - 0.3222 = 0.3020$ (B) Either $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.3222 = 0.6778 or $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$ = 0.3020 + 0.2684 + 0.1074 = 0.6778	M1 $0.8^8 \times 0.2^2$ or 0.00671 M1 $\binom{10}{8} \times p^8 q^2$; (p +q =1) Or 45 × $p^8 q^2$; (p +q =1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for 1 – 0.3222 (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3
(ii)	Let $X \sim B(18, p)$ Let p = probability of delivery (within 24 hours) (for population) H ₀ : $p = 0.8$ H ₁ : $p < 0.8$ P($X \le 12$) = 0.1329 > 5% ref: [pp =0.0816]	 B1 for definition of <i>p</i> B1 for H₀ B1 for H₁ M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) 	
	So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region {0,1,2,,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme	A1dep on both M's E1dep on M1,M1,A1 for conclusion in context	7

Mark Scheme

(iii)	Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \le 10) = 0.0163 < 2.5\%$ $P(X \le 11) = 0.0513 > 2.5\%$ $P(X \ge 11) = 0.0513 > 2.5\%$ $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \ge 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 < 2.5\%$ So critical region is {0,1,2,3,4,5,6,7,8,9,10,18} o.e. Condone $X \le 10$ and $X \ge 18$ or $X = 18$ but not p($X \le 10$) and $p(X \ge 18)$ Correct CR without supportive working scores SC2 max after the 1 st B1 (SC1 for each fully correct tail of CR)	 B1 for H₁ B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct upper tail CR 	7
		TOTAL	19